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Absbact We discuss, in the phase time approach, quantum tunnelling in the presence of 
dissipation for an inverted oscillator with Caldirola-Kanai damping. The exact expressions 
of time delay, traversal time and effective tunnelling velocity are derived. Some paradoxical 
aspects of tunnelling related to the particle speed in crossing the barrier-such~as the 
Hartmann-Fletcher efect-are brielly considered. 

1. Introduction 

As is well known, there are essentially two different ways of introducing dissipation- 
microscopically and phenomenologically. To the former category belongs the micro- 
scopic model, which has been considered at length by Caldeira and Leggett [I], with 
the use of path-integral methods in the study of the dissipative quantum tunnelling 
effect. On the other hand, several phenomenological models of,dissipative systems have 
been proposed, such as the Caldirola-Kanai (CK) equation [Z], the Schrodinger- 
Langevin equation [3], the Gisin equation [4] and the Schrodinger equation with a 
complex potential [ 5 ] .  All these models, except for the CK one, have also been used to 
describe the quantum tunnelling effect in the presence of dissipation [6], a problem that 
has received a great deal of attention in recent years [7]. 

In previous works we have introduced a phenomenological model, called the inverted 
CK equation, that is formally~obtained by the standard CK one by the replacement 

w + io (1) 
i.e. with a Hamiltonian of the form [S, 91 

(2) 

and studied its behaviour with respect to dissipative quantum tunnelling [lo]. The case 
of a driven, inverted CK model has also been considered [l  I]. The physics of the CK 
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model and of its inverted form (2) are very different: the energy eigenstates of (2) are 
no longer square-integrable, and they are degenerate, e.g. with respect to incidence from 
left or right, or, alternatively, with respect to parity. For y - 0  we obviously get the 
Hamiltonian of the inverted harmonic oscillator which, besides its applications in masers 
[12], has also been used in reactive scattering [13], due to the fact that for this kind of 
potential the tunnelling time does not diverge as in the case of a square barrier at 
threshold in the semiclassical limit analysis 1141. 

Moreover, two of us (SB and AJ) have shown in [SI that the inverted CKHamiltonian 
producesboth coherent and squeezed states. As is well known, coherent states represent 
a unique tool to solve a wide class of problems in the more disparate fields, ranging 
from quantum optics to superconductivity and even to elementary particles [ 151. Indeed, 
the physical relevance of the inverted CK equation just comes from its combining the 
main features of the inverted harmonic oscillator with the CK damping. Although it is 
now widely believed that the CK model does actually represent an oscillator with variable 
mass and frequency, rather than a genuine damped one [16], it still constitutes a proto- 
type Hamiltonian for an open quantum system, able, for example, to describe the 
generation ofsqueezed states out of coherent states by extemal changes [17]. Therefore, 
the inverted CK equation may provide, in our opinion, a useful setting for a phenomeno- 
logical description of quantum tunnelling for systems coupled to an environment. 

In [lo, 111, assuming as an initial state a Gaussian wave packet, we found the 
solution of the timedependent SchrBdinger equation for the inverted CK Hamiltonian, 
and derived the expression of the sojourn (or dwell) time [ 18,191i. 

In the present paper, aimed at continuing our study of dissipative quantum tunnel- 
ling for the inverted CK model, we shall consider the problem by the phase time 
approach, essentially based on the time delay [14,20], which is well known to be 
connected with the relevant phase shift CP, according to the relation 

dQ, 
z*=Fi- 

d E  (3) 

The paper is organized as follows. In section 2 we solve the Schrodinger equation for 
Hamiltonian (2) by means of a contact transformation, and find its asymptotic solu- 
tions. The time delay, the traversal time and the effective tunnelling velocity are derived 
in section 3. Concluding remarks, concerningsomeparadoxical aspects of the tunnelling 
process, are given in section 4. 

2. Solution of the inverted CK equation 

First of all, let us solve the time-dependent Schrodinger equation for Hamiltonian (2) 
in the coordinate representation, which reads 

By using the contact transformation [21] 

7 In the followmg, we shall adopt the two more popular and well eslablished definitions of tunnelling time, 
those of dwell time and of delay time, ignoring the many contradictions in the various approaches to the 
problem (the reader is referred to [ICZO]). 
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and following Dodonov and Man'ko [22], the solution of (4) is given by 

r ( Q ,  t)=exp 

where the function f ( Q )  satisfies the following equation: 

with 

Therefore, the solution of (4) can be written as 

wheref[qexp(yt/2)] is the solution of (7). 

By setting 
1/2 

Y=(?) Q 

and 

(7) takes the form 
I 

Equations of the form (7) and (12) have been studied in detail by Barton [20] and 
Ford ef a1 1231 in the q-representation, and by Balasz and Voros [24] in phase space. 
Their solutions can be expressed in terms of parabolic cylinder (or Weber) functions. 
In particular, the energy eigenfnnctions representing particles incident from the left are 
given by [20,23] 

f(8, y)=k-'l2W(8, y)+ikl'2W(0, -y) (13) 

k= (1 +e-2sb)l/2 -e--nb 

k-l= (1 + e-2n6)1/2+ e-"6 

where 

(14) 

(15) 
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and the functions W(8,y) ,  “(8, -y)  have, respectively, the asymptotic forms [20,23] 

1 k o s ( f + 8  logy+-+ n $ m y )  
V Y  4 4 

W(8, y -t +m) - 
and 

Therefore, the asymptotic forms of the solution (9), expressed in terms of the dimen- 
sionless variables y, 8, read 

~ ( y - t  +m,t)=exp(A(f,y,8)) 

~ ( y  --f -CO, t)=iexp(A(t,y,8)) - [l +exp(-2~8)]”~ 43 

where 

iy yt . 
8n 4 

A(t, y ,  8) = --y+-- 18QSLt. 

We can now derive from (18) and (19) the reflection and’transmission amplitudes 
according to the standard definitions. We get 

R= - -1 exp( -z2 6) f (i- ik) 
(2z)’D 

and 

where 

so that 

~ ( 8 )  = arg r(f - i 8 ) .  
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Ford et al[23] have suggested a surprisingly simple yet accurate approximation to the 
phase shift, which is never wrong by more than about 2%, i.e. 

where (1/4d)Zx0.0197. 

3. Tunnelling times 

From the knowledge of the phase shift as a function of the dimensionless energy para- 
meter 8, we are able to deduce the explicit form of the main tunnelling times for the 
inverted CK equation. 

The time delay (or, if negative, the time advance) is given by (3), or, in the dimen- 
sionless formalism 

1 dQ, 
zd=- -. a d l  

Therefore, we get from the approximate expression (25) of a(#) 

where we put 

Expression (27) of the time delay is an increasing function of the dissipation para- 
meter y (see figure 1); the case y = O  corresponds to the usual inverted harmonic 
oscillator. We thus recover the result that dissipation causes a decrease in the tunnelling 
process [IO, 11,251. 

Figure 1. Plot of the time delay for E= 1.5 eV and m = I Hz (E=l) .  
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A more accurate expression of the time delay is obtained by exploiting directly the 
form (24) of the phase shift, which can be written [25] 

(29) 
1 

21 
~ ( 8 )  =- [log r(5 - -ig) -log r(5 +ig)l. 

Then, by (26), we get 

where 

d log r(z) 
d z .  

Y(z)= 

The duplication formula permits us to re-express (30) conveniently as [ZO, 261 

It is useful to give the low-energy and the high-energy limits of the time delay (32). 
We have: 

(i) for I El <c fIR 

c,J % - 2 log 2+ C-7J(3) -+’ . . . a ‘I S2R2 E 2  1 
a 

where Cm0.577 is Euler’s constant and J(3)=Z?-, n-3ml.202; 
(ii) for I E I >> tia 

(33) 

Let us also introduce the traversal time, defined by [ZO] 

(35) 
d@ 
d 8  

T(L, 8) = 2  log L +-=2 log L + 62Td 

where 

L=ia-‘ 

A=(f i /hQ)”2 is the characteristic length of the inverted CK Hamiltonian and (4, I )  
is an interval which contains the bamer. 
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Then we can get the effective tunnelling velocity, ueF, related to T(L, 8) by 

= L  logL+- - ( (37) 

-I  

=.(Iog L+?) 

4. Concluding remarks 

Expressions (32)-(37) derived in the previous section permit us to consider, in the 
framework of the inverted CK model, some paradoxical aspects of the tunnelling 
phenomenon related to the particle speed in crossing the barrier. The first one is a 
paradox widely discussed in the literature [2S, 271 and also present in the tunnelling 
behaviour under the barrier of the inverted harmonic oscillator [20]. Namely, for E<O, 
particles with lower energy travel faster, though of course with smaller probability, as 
we conjecture from (34) for y =O. The same paradox in quantum tunnelling also occurs 
for Hamiltonian (2), but is even more enhanced. Indeed, in the presence of dissipation, 
the values of energy for which particles exhibit such a paradoxical behaviour are sup- 
pressed in the lower levels, i.e. particles with /El >>fin (E<O) cross the barrier faster. 

This is easily seen from (37): the effective speed vCF becomes larger for particles 
with energy IEl>>ti.Q (or IEl >fro for the inverted oscillator, y=O),  because dCg/d8 
(being a symmetric function of E )  becomes more negative. 

Moreover, for a suffciently wide (or high) barrier, i.e. L>>1, or (see (36)) 
I /2  

I(?) >>I 

the effective tunnelling velocity becomes arbitrarily large. This shows that the Hart- 
mann-Fletcher effect [28, 191 also occurs for the dissipative tunnelling of the inverted 
CK oscillator (and, therefore, for the inverted oscillator in the absence of dissipation, 
i.e. for y=O, ~ = o J ) .  

At present, such an independence of the tunnelling speed from the barrier width is 
far from being understood on a clear physical basis [19]. However, let us recall that 
the Hartmann-Fletcher effect has just recently received experimental confirmation by 
the evidence for superluminal group velocities in the propagation of electromagnetic 
evanescent waves in waveguides [29] and in single-photon tunnelling [30]. In both cases, 
a phase-time approach is used. A possible explanation may be the presence of non- 
local effects (of electromagnetic and/or quantum nature) [31] in the phenomena consid- 
ered. Due to the well known analogy between propagation of electromagnetic signals 
in waveguides and quantum tunnelling, it is therefore possible that our result on the 
existence of the Hartmann-Fletcher effect for the inverted CK model may find observa- 
tional support from the introduction of dissipative effects in experiments similar to 
those reported in [29] and [30]. 
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